Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,7,13,18-Tetraoxa-1,10-diazoniabicyclo[8.5.5]icosane hexafluoridosilicate

Nalinava Sen Gupta, ${ }^{\text {a* }}$ David S. Wragg, ${ }^{\text {b }}$ Mats Tilset ${ }^{c}$ and Jon Petter Omtvedt ${ }^{\text {a }}$

${ }^{\text {a }}$ Centre for Accelerator Based Research and Energy Physics (SAFE), Department of Chemistry, University of Oslo, PO Box 1038 Blindern, Oslo 0318, Norway, ${ }^{\text {b }}$ inGAP Centre for Research Based Innovation, Center for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, Oslo 0315, Norway, and ${ }^{\text {c }}$ Department of Chemistry, University of Oslo, PO Box 1033 Blindern, Oslo 0315, Norway
Correspondence e-mail: n.s.gupta@kjemi.uio.no

Received 29 March 2011; accepted 30 June 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.039 ; w R$ factor $=0.116$; data-to-parameter ratio $=18.7$.

The asymmetric unit of the title molecular salt, $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{2+} \cdot \mathrm{SiF}_{6}{ }^{2-}$, contains half of both the anion and the cation, both ions being completed by a crystallographic twofold axis passing through the Si atom. The cation has a cage structure with the ammonium H atoms pointing into the cage. These H atoms are shielded from intermolecular interactions and form only intramolecular contacts. There are short intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions in the structure, but no conventional intermolecular hydrogen bonds.

Related literature

For related structures, see: Cos et al. (1982); Rehder \& Wang (2003); Luger et al. (1991); Sen Gupta et al. (2011); Anderson et al. (2006); Braband et al. (2003); Llusar et al. (2001). For discussion of a cryptand as a molecular automatic titrator, see: Alibrandi et al. (2009). For NMR data, see: Macchioni et al. (2001); Christe \& Wilson (1990).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{2+} \cdot \mathrm{SiF}_{6}{ }^{2-} & V=1874.0(15) \AA^{3} \\
M_{r}=432.49 & Z=4 \\
\text { Orthorhombic, Pbcn } & \text { Mo } K \alpha \text { radiation } \\
a=10.050(5) \AA & \mu=0.21 \mathrm{~mm}^{-1} \\
b=23.218(5) \AA & T=293 \mathrm{~K} \\
c=8.031(5) \AA & 0.11 \times 0.10 \times 0.05 \mathrm{~mm}
\end{array}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.977, T_{\text {max }}=0.990$
9809 measured reflections 2305 independent reflections 1467 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 123$ parameters
$w R\left(F^{2}\right)=0.116 \quad$ H-atom parameters constrained
$S=1.02$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e} \AA^{-3}$
2305 reflections
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.91	2.19	$2.701(2)$	115
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.91	2.30	$2.813(2)$	115
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{i}}$	0.91	2.37	$2.826(2)$	111
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~F} 004^{\text {ii }}$	0.97	2.37	$3.277(3)$	156
$\mathrm{C} 011-\mathrm{H} 01 B \cdots \mathrm{~F} 3^{\text {iii }}$	0.97	2.50	$3.381(3)$	151
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{~F} 05^{\text {iv }}$	0.97	2.39	$3.289(3)$	155
$\mathrm{C} 014-\mathrm{H} 01 C \cdots \mathrm{~F} 005$	0.97	2.41	$3.257(3)$	146
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~F} 00^{\mathrm{v}}$	0.97	2.41	$3.189(3)$	137
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{~F}^{\text {iii }}$	0.97	2.17	$3.129(3)$	169
$\mathrm{C} 014-\mathrm{H} 01 D \cdots \mathrm{~F} 3$	0.97	2.50	$3.039(3)$	115
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{~F}^{2} 05^{\mathrm{v}}$	0.97	2.52	$3.368(3)$	147

Symmetry codes: (i) $-x+2, y,-z+\frac{3}{2}$; (ii) $-x+1, y,-z+\frac{1}{2}$; (iii) $-x+\frac{3}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $x,-y, z+\frac{1}{2}$; (v) $x, y, z+1$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Berndt, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the Norwegian Research Council for financial support (project No. 177538).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2006).

References

Alibrandi, G., Lo Vecchio, C. \& Lando, G. (2009). Angew. Chem. Int. Ed. 48, 6332-6334.
Anderson, K. M., Goeta, A. E., Hancock, K. S. B. \& Steed, J. W. (2006). Chem. Commun. pp. 2138-2140.
Braband, H., Zahn, T. I. \& Abram, U. (2003). Inorg. Chem. 42, 6160-6162.
Brandenburg, K. \& Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Christe, K. O. \& Wilson, W. W. (1990). J. Fluorine Chem. 46, 339-342.
Cos, B. G., Murray-Rust, J., Murray-Rust, P., van Truong, N. \& Schneider, H. (1982). Chem. Commun. pp. 377-379.

Llusar, R., Uriel, S. \& Vicent, C. (2001). J. Chem. Soc. Dalton Trans. pp. 28132818.

Luger, P., Buschmann, J., Knöchel, A., Tiemann, D. \& Patz, M. (1991). Acta Cryst. C47, 1860-1863.
Macchioni, A., Zuccaccia, C., Clot, E., Gruet, K. \& Crabtree, R. H. (2001). Organometallics, 20, 2367-2373.
Rehder, D. \& Wang, D. (2003). Private Communication.
Sen Gupta, N., Wragg, D. S., Tilset, M. \& Omtvedt, J. P. (2011). Acta Cryst., E67, 1929-1930.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o1958-o1959 [doi:10.1107/S1600536811026006]

4,7,13,18-Tetraoxa-1,10-diazoniabicyclo[8.5.5]icosane hexafluoridosilicate

N. Sen Gupta, D. S. Wragg, M. Tilset and J. P. Omtvedt

Comment

Compound (I) was obtained unintentionally as the product of the attempted synthesis of a metal-encrypted tungsten(VI) complex with the [2.1.1]cryptand, 4,7,13,18-tetraoxa-1,10-diazabicyclo[8.5.5]icosane. We suspect that WCl_{6}, being susceptable to hydrolysis, reacted with water that was present as a contaminant. Compound (I) was obtained by recrystallization of the crude reaction product from acetone. When the same product was recrystalized from methanol, a similar diprotonated cryptand salt with $\mathrm{PF}_{6}{ }^{-}$as the anion formed (Sen Gupta et al., 2011). The solvent used for recystallization was the only difference between the methods to obtain the two different crystals.

This structure was originally solved as a hexafluorophosphate salt, but the $\mathrm{P}-\mathrm{F}$ bond lengths appeared unusually long and corresponded to typical $\mathrm{Si}-\mathrm{F}$ rather than $\mathrm{P}-\mathrm{F}$ bonds. The highest difference peak was close to $\mathrm{H}-\mathrm{N}^{+}$, indicating that the occupancy of the H atom was higher than 0.5 , which would be required to ensure charge neutrality in a $\mathrm{PF}_{6}{ }^{-}$salt. The most negative difference density was observed near the central P atom, showing that in reality there are less electrons there. Furthermore, refinement of the data with Si gave slightly lower R factors than with P . Though similar long $\mathrm{P}-\mathrm{F}$ bonds are not unprecedented (Braband et al., 2003; Llusar et al., 2001), the above observations very strongly suggested that this was a diprotonated $\mathrm{SiF}_{6}{ }^{2-}$ salt rather than a monoprotonated $\mathrm{PF}_{6}{ }^{-}$salt.

The presence of both anions in the reaction product was confirmed by ${ }^{19} \mathrm{~F}$ NMR data collected in a $\mathrm{CD}_{3} \mathrm{OD}$ solution. The presence of the $\mathrm{PF}_{6}{ }^{-}$anion was indicated by a doublet at $\delta=-74.7$ p.p.m. with ${ }^{1} \mathrm{~J}\left({ }^{19} \mathrm{~F}-{ }^{31} \mathrm{P}\right)=754 \mathrm{~Hz}$ (Macchioni et al., 2001). A small singlet peak at $\delta=-130.6$ p.p.m. and a heteronuclear coupling constant ${ }^{1} \mathrm{~J}\left({ }^{29} \mathrm{Si}^{-19} \mathrm{~F}\right)=109 \mathrm{~Hz}$ were also observed and correspond to the $\mathrm{SiF}_{6}{ }^{2-}$ anion (Christe \& Wilson, 1990).
$\mathrm{SiF}_{6}{ }^{2-}$ is assumed to be generated by the formation of HF upon the hydrolysis of $\mathrm{PF}_{6}{ }^{-}$and by the consequent reaction of HF with the silica of the glass. A smilar case was reported by Anderson et al. (2006).

In the crystal of compound (I), the two ammonium hydrogen atoms of the diprotonated cryptand cage are pointing inwards. Cryptands are known to form proton crypts, in which the protons are very efficiently concealed inside a tight molecular cavity. No exception is observed here: the ammonium hydrogen atoms are not involved in intermolecular hydrogen bonding. They only form intramolecular contacts with the oxygen atoms of the cryptand.

Experimental

Reagents were purchased from Sigma-Aldrich and were used without further purification. Reactions were carried out under inert conditions by Schlenk-line techniques. The metal chloride $\left(\mathrm{WCl}_{6}, 100 \mathrm{mg}, 0.25 \mathrm{mmol}\right)$ was allowed to stir for a minute in 10 ml toluene and then was reacted with a small excess of of $\mathrm{AgPF}_{6}(381 \mathrm{mg}, 1.51 \mathrm{mmol})$ to give AgCl as a precipitate and

supplementary materials

$\mathrm{W}\left(\mathrm{PF}_{6}\right)_{6}$ dissolved in solution. After 30 minutes stirring, the precipitate was allowed to settle. The solution was transferred under inert conditions by cannula technique and treated with the solution of [2.1.1]cryptand ($66 \mu 1,0.25 \mathrm{mmol}$) in 5 ml toluene for 30 minutes. The crude reaction product was obtained as dirty yellow mass after drying the solvent. Portions of the product were recrystallized from acetone which produced crystal (I).

Refinement

Hydrogen $U_{\text {iso }}$'s were set at 1.2 times the $U_{\text {eq }}$ of the heavy atom to which the hydrogen was attached and refined in riding mode. $\mathrm{C}-\mathrm{H}$ distances were fixed at $0.97 \AA$ and the $\mathrm{N}-\mathrm{H}$ distance at $0.91 \AA$.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The hydrogen atoms attached to the carbons are omitted for clarity. Symmetry codes: (i) $-\mathrm{x}+1, \mathrm{y},-\mathrm{z}+1 / 2$; (ii) $-\mathrm{x}+2, \mathrm{y},-\mathrm{z}+3 / 2$.

4,7,13,18-Tetraoxa-1,10-diazoniabicyclo[8.5.5]icosane hexafluoridosilicate

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{2+} \cdot \mathrm{SiF}_{6}{ }^{2-}$
$M_{r}=432.49$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=10.050$ (5) \AA
$b=23.218$ (5) \AA
$c=8.031$ (5) \AA
$V=1874.0(15) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
$F(000)=912$
$D_{\mathrm{x}}=1.533 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2312 reflections
$\theta=2.2-28.0^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.11 \times 0.10 \times 0.05 \mathrm{~mm}$
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.977, T_{\text {max }}=0.990$
9809 measured reflections

$$
\begin{aligned}
& k=-29 \rightarrow 31 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.116$
$S=1.02$

2305 reflections
123 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0509 P)^{2}+0.6523 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.26$ e \AA^{-3}

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Si1	0.5000	$0.14596(3)$	0.2500	$0.02931(19)$
F3	$0.61848(13)$	$0.19715(5)$	$0.25800(17)$	$0.0524(3)$
O2	$0.86157(15)$	$0.02390(6)$	$0.76498(17)$	$0.0421(4)$
F004	$0.50972(13)$	$0.14736(7)$	$0.04208(16)$	$0.0729(5)$
F005	$0.61920(12)$	$0.09635(5)$	$0.2602(2)$	$0.0668(4)$
O1	$0.97909(13)$	$0.14163(5)$	$0.97904(18)$	$0.0391(3)$
N1	$0.79018(16)$	$0.13502(6)$	$0.72125(19)$	$0.0341(4)$
H1	0.8702	0.1174	0.7367	0.041^{*}
C5	$0.9322(2)$	$-0.02623(8)$	$0.7128(3)$	$0.0403(5)$
H5A	0.9389	-0.0267	0.5923	0.048^{*}
H5B	0.8844	-0.0605	0.7477	0.048^{*}
C1	$0.6852(2)$	$0.08871(8)$	$0.7376(3)$	$0.0450(5)$
H1A	0.6581	0.0853	0.8531	0.054^{*}
H1B	0.6076	0.0991	0.6722	0.054^{*}
C3	$0.7786(2)$	$0.18006(8)$	$0.8537(3)$	$0.0394(5)$

H3A	0.6854	0.1879	0.8757	0.047^{*}
H3B	0.8200	0.2155	0.8160	0.047^{*}
C011	$0.9254(2)$	$0.18663(9)$	$0.5104(2)$	$0.0412(5)$
H01A	0.9253	0.2032	0.3996	0.049^{*}
H01B	0.9459	0.2168	0.5901	0.049^{*}
C4	$0.8453(2)$	$0.15967(10)$	$1.0105(3)$	$0.0429(5)$
H4A	0.8456	0.1906	1.0917	0.051^{*}
H4B	0.7952	0.1278	1.0569	0.051^{*}
C2	$0.7402(2)$	$0.03213(9)$	$0.6775(3)$	$0.0483(6)$
H2A	0.6785	0.0011	0.7013	0.058^{*}
H2B	0.7560	0.0333	0.5584	0.058^{*}
C014	$0.7927(2)$	$0.16036(9)$	$0.5484(2)$	$0.0424(5)$
H01C	0.7736	0.1304	0.4677	0.051^{*}
H01D	0.7241	0.1896	0.5391	0.051^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	$0.0274(4)$	$0.0258(3)$	$0.0347(4)$	0.000	$0.0017(3)$	0.000
F3	$0.0491(8)$	$0.0408(6)$	$0.0671(8)$	$-0.0155(6)$	$-0.0126(6)$	$0.0053(6)$
O2	$0.0468(8)$	$0.0332(7)$	$0.0463(8)$	$0.0034(6)$	$-0.0072(7)$	$-0.0068(6)$
F004	$0.0457(8)$	$0.1356(14)$	$0.0373(7)$	$-0.0124(8)$	$0.0033(6)$	$-0.0186(8)$
F005	$0.0401(7)$	$0.0406(7)$	$0.1199(13)$	$0.0122(6)$	$-0.0051(8)$	$-0.0097(8)$
O1	$0.0357(8)$	$0.0381(8)$	$0.0435(8)$	$-0.0003(6)$	$0.0016(6)$	$0.0001(6)$
N1	$0.0268(8)$	$0.0330(8)$	$0.0426(9)$	$0.0010(6)$	$0.0007(7)$	$0.0030(7)$
C5	$0.0537(13)$	$0.0267(9)$	$0.0406(11)$	$-0.0044(9)$	$0.0065(9)$	$-0.0041(7)$
C1	$0.0293(10)$	$0.0426(12)$	$0.0632(14)$	$-0.0069(9)$	$-0.0008(10)$	$0.0046(11)$
C3	$0.0383(11)$	$0.0346(10)$	$0.0454(11)$	$0.0042(9)$	$0.0074(9)$	$0.0007(8)$
C011	$0.0448(12)$	$0.0429(11)$	$0.0358(10)$	$0.0049(9)$	$0.0023(9)$	$0.0081(9)$
C4	$0.0388(11)$	$0.0510(13)$	$0.0390(11)$	$0.0033(9)$	$0.0084(9)$	$0.0014(9)$
C2	$0.0457(13)$	$0.0414(12)$	$0.0578(13)$	$-0.0097(10)$	$-0.0078(11)$	$-0.0001(10)$
C014	$0.0380(11)$	$0.0505(12)$	$0.0386(11)$	$0.0045(9)$	$-0.0064(9)$	$0.0067(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

Si1—F005	$1.6640(13)$
Si1—F005	$1.6640(13)$
Si1—F004	$1.6730(17)$
Si1—F004	$1.6730(17)$
Si1—F3	$1.6836(13)$
Si1—F3	$1.6836(13)$
O2—C2	$1.421(3)$
O2—C5	$1.426(2)$
O1—C011	$1.421(2)$
O1—C4	$1.431(2)$
N1—C3	$1.496(2)$
N1—C014	$1.508(2)$
N1—C1	$1.512(2)$

$\mathrm{C} 1-\mathrm{C} 2$	$1.505(3)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9700
$\mathrm{C} 3-\mathrm{C} 4$	$1.503(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700
$\mathrm{C} 011-\mathrm{O} 1^{\mathrm{ii}}$	$1.421(2)$
$\mathrm{C} 011-\mathrm{C} 014$	$1.498(3)$
$\mathrm{C} 011-\mathrm{H} 01 \mathrm{~A}$	0.9700
$\mathrm{C} 011-\mathrm{H} 01 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700

sup-4

supplementary materials

N1-H1	0.9100
C5-C5 ${ }^{\text {ii }}$	1.488 (4)
C5-H5A	0.9700
C5-H5B	0.9700
F005--Si1-F005	92.38 (10)
F005 ${ }^{\text {i }}$-Si1-F004 ${ }^{\text {i }}$	91.18 (8)
F005-Si1-F004 ${ }^{\text {i }}$	90.36 (8)
F005-Si1-F004	90.36 (8)
F005-Si1-F004	91.18 (8)
F004-Si1-F004	177.77 (13)
F005 ${ }^{\text {i }}$-Si1-F3	178.75 (7)
F005-Si1-F3	88.72 (7)
F004 ${ }^{\text {i }}$-Si1-F3	89.40 (7)
F004-Si1-F3	89.03 (7)
F005 ${ }^{\text {i }}$ - $\mathrm{Si1}-\mathrm{F} 3{ }^{\text {i }}$	88.72 (7)
F005-Si1-F3 ${ }^{\text {i }}$	178.75 (7)
F004 ${ }^{\text {i }}$ - $\mathrm{Si1}-\mathrm{F} 3{ }^{\text {i }}$	89.03 (7)
F004-Si1-F3 ${ }^{\text {i }}$	89.40 (7)
F3-Si1-F3 ${ }^{\text {i }}$	90.18 (10)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 5$	113.08 (16)
C011 ${ }^{\text {ii }}$-O1-C4	114.14 (15)
C3-N1-C014	112.51 (15)
C3-N1-C1	112.39 (16)
C014-N1-C1	111.66 (16)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$	106.6
C014-N1-H1	106.6
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	106.6
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 5{ }^{\text {ii }}$	109.75 (13)
O2-C5-H5A	109.7
C5 ${ }^{\text {ii }}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.7
O2-C5-H5B	109.7
C5 ${ }^{\text {ii }}$ - $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.7
H5A-C5-H5B	108.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	109.68 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7
C2-C1-H1B	109.7
C2-O2-C5-C5 ${ }^{\text {ii }}$	169.93 (19)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-148.05 (17)
C014-N1-C1-C2	84.4 (2)
C014-N1-C3-C4	-150.55 (16)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	82.4 (2)
C011 ${ }^{\text {ii- }} \mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	88.0 (2)

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+2, y,-z+3 / 2$.

C2-H2B	0.9700
C014-H01C	0.9700
C014-H01D	0.9700
N1-C1-H1B	109.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2
N1-C3-C4	109.91 (16)
N1-C3-H3A	109.7
C4-C3-H3A	109.7
N1-C3-H3B	109.7
C4-C3-H3B	109.7
H3A-C3-H3B	108.2
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{C} 011-\mathrm{C} 014$	106.85 (16)
O1 ${ }^{\text {ii }}-\mathrm{C} 011-\mathrm{H} 01 \mathrm{~A}$	110.4
C014-C011-H01A	110.4
O1 ${ }^{\text {ii }}$ - $\mathrm{C} 011-\mathrm{H} 01 \mathrm{~B}$	110.4
C014-C011-H01B	110.4
H01A-C011-H01B	108.6
O1-C4-C3	111.31 (16)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.4
C3-C4-H4A	109.4
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.4
C3-C4-H4B	109.4
H4A-C4-H4B	108.0
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	105.91 (17)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.6
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.6
H2A-C2-H2B	108.7
C011-C014-N1	111.18 (16)
C011-C014-H01C	109.4
N1-C014-H01C	109.4
C011-C014-H01D	109.4
N1-C014-H01D	109.4
H01C-C014-H01D	108.0
N1-C3-C4-O1	53.0 (2)
C5-O2-C2-C1	-175.52 (16)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	52.4 (2)
O1 ${ }^{\text {iii }} \mathrm{C} 011-\mathrm{C} 014-\mathrm{N} 1$	60.8 (2)
C3-N1-C014-C011	76.0 (2)
C1-N1-C014-C011	-156.55 (16)

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.91	2.19	2.701 (2)	115
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.91	2.30	2.813 (2)	115
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {ii }}$	0.91	2.37	2.826 (2)	111
C1—H1B \cdots F004 ${ }^{\text {i }}$	0.97	2.37	3.277 (3)	156
C011-H01B \cdots F3 ${ }^{\text {iii }}$	0.97	2.50	3.381 (3)	151
C2-H2A $\cdots{ }^{\text {c }} 005{ }^{\text {iv }}$	0.97	2.39	3.289 (3)	155
C014-H01C \cdots F005	0.97	2.41	3.257 (3)	146
C3-H3A \cdots F004 ${ }^{\text {v }}$	0.97	2.41	3.189 (3)	137
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~F} 3^{\text {iii }}$	0.97	2.17	3.129 (3)	169
C014-H01D \cdots F3	0.97	2.50	3.039 (3)	115
C4-H4B \cdots F005 ${ }^{\text {v }}$	0.97	2.52	3.368 (3)	147

Symmetry codes: (ii) $-x+2, y,-z+3 / 2$; (i) $-x+1, y,-z+1 / 2$; (iii) $-x+3 / 2,-y+1 / 2, z+1 / 2$; (iv) $x,-y, z+1 / 2$; (v) $x, y, z+1$.

Fig. 1

supplementary materials

Fig. 2

